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1 Introduction

With noticeable impact in areas such as economics, the petroleum industry, telecommunications net-

works, and shipping,1 mathematical programming, which includes the study of linear and nonlinear

optimization problems, has developed significantly throughout the twentieth century. Although past

contributions to this field have been made by mathematicians such as Hitchcock,2 Fourier,3 and Kan-

torovich,4 it was not until WWII and soon thereafter in 1947 that the basis of today’s modern linear

optimization algorithms were founded by George B. Dantzig and John von Neumann.5 Dantzig in June

1947, working out of a Pentagon funded U.S. Air Force program “Scientific Computation of Optimal

Programs,” developed the Simplex Algorithm, an algorithm that allows for the optimization of linear

programming problems.6 Whereas former mathematicians had solved for specific optimization cases

through techniques that did not involve the boundary of a geometric space, Dantzig’s Simplex Algo-

rithm followed the edges of the geometrically confined space (as defined by the original conditions of the

problem) in order to reach the solution point.7

1Overton Michael L., “Linear Programming.,” Draft for Encyclopedia Americana, 1997,
2Hitchcock Frank L., The Distribution of a Product from Several Sources to Numerous Localities, vol. 20, 1-4, 224–

230, doi:10 . 1002 / sapm1941201224, eprint: https : / / onlinelibrary . wiley . com / doi / pdf / 10 . 1002 / sapm1941201224,
https://onlinelibrary.wiley.com/doi/abs/10.1002/sapm1941201224.

3Fourier, Jean Baptiste Joseph. “Solution d’une question particulière du calcul des inégalités.” Chapter. In Oeuvres de
fourier: Publiées par les soins de gaston darboux, edited by Jean Gaston Darboux, 2:315–19. Cambridge Library Collection
- Mathematics. Cambridge: Cambridge University Press, 2013. doi:10.1017/CBO9781139568159.016.

4Kantorovich, L.V "Mathematical Methods in the Organization and Planning of Production," Publication House of the
Leningrad State University, 1939, 68 pp. Translated in Management Science, Vol. 6, 1960, pp. 366-422.

5Overton, "Linear Programming"
6Gass, Saul I., and Arjang Assad. An Annotated Timeline of Operations Research: An Informal History. New York:

Kluwer Academic Publishers, 2005, 61.
7Dantzig, G.B. (1987c). “Origins of the Simplex Method,” in S.G Nash (ed.), Proceedings of the ACM Conference on

a History of Scientific Computing, ACM Press, Addison-Wesley Publishing Company, 1990, 141–151.
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2 Linear and Nonlinear Optimization

Linear programming is a mathematical field comprising of linear optimization, a set of procedures

for maximizing or minimizing a function, known as an “objective function” subject to a series of

requirements on the given variables known as “constraint equations”, in which both the objective

function and the constraint equations are of linear nature. 8 An example follows:

Example 1.

Maximize P (x1, x2) = x1 + 2x2

Subject to: 5x1 + 8x2 < 14

x2 ≠ x1 < 5

x1 < 15

x1 > 0, x2 > 0

Example 1. is of linear nature as it involves the maximization of solely linear functions. We note that

the final constraint equation requires both variables to be nonnegative, a constraint which is often

implied.

This example may be solved either graphically or through the use of the Simplex Method, a technique

used for the optimization of linear functions.

Nonlinear optimization focuses on maximizing or minimizing objective functions where either the

objective function or the constraint equation is of nonlinear nature.

An example follows:

Example 2.

Maximize P (x1, x2) = 200
1

≠ (x1 ≠ 9)2 ≠ (x2 ≠ 3)2
2

Subject to: 5x1 + 8x2 < 14

x2 ≠ x1 < 5

x1 < 15

x1 > 0, x2 > 0

Example 2. is of nonlinear nature as it involves the maximization of a polynomial function with degree

2.

This example may not be solved through the use of the Simplex Method, as it is not of linear nature. A
8Strayer, James. Linear Programming and Its Applications. Springer, 1989. p. 1
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graphical analysis can help lead towards an optimal solution but is not su�cient to guarantee that the

point is a maximum or a minimum.

3 Statement of Problem

I will be exploring and analyzing di�erent algorithmic methods so as to find a solution to my research

question:

How can I maximize or minimize nonlinear optimization problems over two variables, whose objective

or constraint equations are polynomials with degree two or greater?

In this work I will begin by discussing the problem of finding a solution to a linear optimization

problem via the Simplex method and graphical analyses and show why the Simplex method is

ine�cient when used on nonlinear optimization problems. I will then attempt to develop a technique

used for the optimization of nonlinear functions using di�erential calculus and graphical analysis. The

graphing of an optimization problem with n variables leads to the graphing of the corresponding

objective function in dimension n + 1. Since visualizing four or more dimensions poses a significant

logistical problem, throughout this work I will be focusing on optimization problems with two variables

accompanied by three dimensional graphical images. This exploration involves linear and nonlinear

optimization techniques, di�erential calculus, as well as methods of graphical analysis.

4 The Simplex Method

The Simplex method provides a way to solve the objective function by iterating over and finding

solutions to sets of equations.9 This process introduces slack variables in order to convert the

inequality into an equation, and the problem into a canonical slack maximization and canonical

slack minimization linear programming problem.10 The Simplex method then encodes these

variables into a tableau, known as a Tucker tableau (Table 1.) and makes use of an iterative process

of modifying the tableau’s rows in order to achieve a function that maximizes or minimizes the

objective function.

Slack variables are commonly represented by t1, t2, t3, . . . tm.11 A canonical slack maximization

problem is in the following form12 :

9Wisniewski, Mik, and Jonathan Klein. Linear Programming. Palgrave MacMillan, 2001. p. 30
10Strayer, Linear Programming, 29
11Ibid.
12Ibid, 28
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Maximize f (x1, x2, . . . , xn) = c1x1 + c2x2 + . . . cnxn ≠ d

Subject to: a11x1 + a12x2 + . . . + a1nxn ≠ b1 = ≠t1

a21x1 + a22x2 + . . . + a2nxn ≠ b2 = ≠t2

. . .

am1x1 + am2x2 + . . . + amnxn ≠ bm = ≠tm

t1, t2, . . . tm > 0

x1, x2, . . . xn > 0

This canonical slack maximization problem corresponds with the following Tucker tableau:

Table 1: A Tucker tableau

The first step of the Simplex Method involves choosing a numerical element of the Tucker tableau

which will be used to rearrange a Tucker tableau in the subsequent step.13

Step 1.

(1) Make sure that at least one c value is positive. If no c value is positive, then the optimal solution

is already shown

(2) Choose a positive cj value

(3) Make sure at least one a value in the same column as cj is positive. If no a value is positive, then

the problem is not bounded

(4) List all values of bi/aij such that aij > 0 as i ranges from 1 to m inclusive. Find the minimum of

the listed values. This minimum result will be in the form bp/apj .

Let the pivot point apj be known as p.

The second step of the Simplex Method involves the transformation of a Tucker tableau into another

13Strayer, Linear Programming, 29
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Tucker tableau which is closer to the optimal solution. 14 The steps are outlined below:

Step 2.

(1) Switch the variable’s shown on the same row and column as p but do not change the plus or minus

signs

(2) Change p to 1/p

(3) Divide every entry in the same row as p by p

(4) Divide every entry in the same column as p by ≠p

(5) If a number s is not in the same column or row as p, then find the number in the same column as

s and in the same row as p and denote this number q.

(6) Find the number in the same row as s and in the same column as p and denote this number r

(7) Replace s with (ps ≠ qr)/p

Shown below is a solution to Example 1 utilizing the Simplex Method. After its implementation, a

valid solution to the maximization problem is found.

Table 2: The initial tableau representing Example 1

c1 > 0, c2 > 0

Choose

c1 = 1

min{ b1
a11 = 15

1 } = 15

14Ibid, 34
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Table 3: After Step 1 of the Simplex Method, the pivot element is selected (ú).

Sample Calculation:

1 æ 1/1 = 1, 0 æ 0/1 = 0, 15 æ 15/1 = 15

≠1 æ ≠(≠1/1) = 1, 1 æ (ps ≠ qr)/p = (1· 1 ≠ 0· (≠1))/1 = 1,

5 æ (ps ≠ qr)/p = (1· 5 ≠ 15· (≠1))/1 = 20

≠5 æ ≠(≠5/1) = 5, ≠8 æ (ps ≠ qr)/p = (1 · (≠8) ≠ 0 · (≠5))/1 = ≠8

≠14 æ (ps ≠ qr)/p = (1 · (≠14) ≠ 15 · (≠5))/1 = 61

1 æ ≠1/1 = ≠1, 2 æ (ps ≠ qr)/p = (1 · 2 ≠ 0 · 1)/1 = 2,

0 æ (ps ≠ qr)/p = (1· 0 ≠ 15· 1) = ≠15

Table 4: Elements are rearranged according to Step 2 of the Simplex Method.

Table 5: After Step 1 of the Simplex Method, the pivot element is selected (ú).
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Table 6: Elements are rearranged according to Step 2 of the Simplex Method.

As the bottom row is all non-positive, an optimal solution has been reached. Setting ta and tb to 0

yields a value of 15 and 20 for x1 and x2 respectively. These choices result in a slack variable value for

tc of 221 and the maximum value of P of 55.

An equally valid solution may be reached graphically, as the fundamental theorem of linear

programming states that values at vertices will be the maximum or minimum values. 15 To find all

possible vertices, the constraint inequalities may be converted into equations and then successive pairs

of equations may be solved.

15Tardella, F. The fundamental theorem of linear programming: extensions and applications, Optimization, 60:1-2,
283-301, DOI: 10.1080/02331934.2010.506535
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Figure 1: Shows the objective functions and constraint equations for Example 1.

Figure 2: Shows the contour plot of the objective functions and constraint equations for Example 1.
This allows us to reduce the 3D graph into 2 dimensions so that values of the objective function may be
examined more easily.
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Visually, Figure 2. confirms the solution found through the Simplex Method, as the maximal point

appears to be on the vertex at (15, 20) with a value that approximates 60.

5 Nonlinear Optimization

When it comes to nonlinear optimization, the technique implemented in linear optimization is

insu�cient for the following reasons: The added component of an extra degree or nonlinear function

renders the Simplex Method unusable; the optimal value may occur at an interior, boundary, or

extreme point within the feasibility region, thus invalidating the Simplex Method which looks only for

extreme points16; and the theorem of linear programming does not hold for nonlinear problems

signifying that the optimal solution may occur at any value within the feasible region determined by

the constraint equations.

Since our solution range has increased drastically, the number of points we must examine increases

significantly as well. One way to reduce the feasibility range is to follow the gradient of maximal or

minimal ascent. This gradient will lead us in the direction of a point in which the objective function

will change to the greatest extent. By continually following the gradient, one will eventually reach the

minimal or maximal point of the objective function. The gradient of a function over two variables is

equal to the vector whose components are the derivatives of the function with respect to both x1 and

x2.

Another successful method includes setting both components of the gradient to 0, simultaneously

solving for x1 and x2 to obtain critical points of the function, and then testing these critical points by

plugging them into the objective function in order to find a local maximum/minimum.

5.1 Nonlinear Optimization Example 2.

Looking at Example 2.’s objective function, we can find its gradient by using impartial di�erentiation;

first we take the derivative with respect to x1 and then with respect to x2 to obtain:

ˆf(x1, x2)
ˆx1

= ≠400· (≠9 + x1)

ˆf(x1, x2)
ˆx2

= ≠400· (≠3 + x2)

D= {≠400· (≠9 + x1), ≠400· (≠3 + x2)}

16Bradley, Stephen P., Arnoldo C. Hax, and Thomas L. Magnanti. Applied Mathematical Programming. Reading, MA:
Addison-Wesley, 1992, p.413.
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The first element of D is denoted Dx1 and the second element of D is denoted Dx2. Next, we must nor-

malize the vector D, or convert it to a form in which its magnitude is 1. We normalize the vector so that

its magnitude may be determined through other means, either arbitrarily (Method 1.) or systematically

(Method 2.). Mathematica’s “Normalize” function was utilized in order to find the following normalized

vector N17:

N =
;

≠ 400·(x1≠9)Ô
160000·|x1≠9|2+160000·|x2≠3|2 , ≠ 400·(x2≠3)Ô

160000·|x1≠9|2+160000·|x2≠3|2

<

Where the first element of N is denoted Nx1 and the second element of N is denoted Nx2.

5.2 Method 1:

Proceeding, we choose a point at random within the constraint equations and follow the normal line

until the maximum point is reached. Figure 3. And Table 7. jointly show how this process, in which

the line starting at length l is multiplied by 2
3 in magnitude upon each consecutive step, asymptotically

leads to the optimal point as the number of steps n æ Œ.

The general form of this process is associated with the following algorithm:

Algorithm 1: Finding the optimal solution through approximation with arbitrary starting line length

l and arbitrary ratio k.

(1) Choose a point A = (cx1, cx2) that meets all of the constraint equations, i.e. is within the

feasibility range

(2) Set l to an arbitrary length less than the domain of the function

(3) Update cx1 to cx1 + l · Nx1 and cx2 to cx2 + l · Nx2

(4) Divide l by k œ (1, Œ)

(5) Repeat steps 3 to 5 "n" number of times

(6) The final value of A = (cx1, cx2) will approximate the optimal solution

Table 7. Compares key elements of the current point at each step throughout Algorithm 1. with a total

of n=16 steps.

Trial Number Line length l: x1 x2 P (x1, x2)

0 8 1.3219121 2.5301852 -11834.752

17See Appendix A
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1 4 9.3069776 3.0187837 -18.917615

2 2 3.9836006 2.6930514 -5051.6961

3 1 7.5325186 2.9102062 -432.31292

4 2≠1 9.8984639 3.0549761 -162.05197

5 2≠2 8.3211670 2.9584629 -92.507903

6 2≠3 9.3726983 3.0228050 -27.88482

7 2≠4 8.6716775 2.9799103 -21.639857

8 2≠5 9.1390247 3.0085068 -3.8800462

9 2≠6 8.8274599 2.9894424 -5.9763114

10 2≠7 9.0351698 3.0021520 -0.2483085

11 2≠8 8.8966965 2.9936790 -2.1423137

12 2≠9 8.9890120 2.9993277 -0.0242376

13 2≠10 9.0505557 3.0030935 -0.5130890

14 2≠11 9.0095266 3.0005829 -0.0182190

15 2≠12 8.9821738 2.9989092 -0.0637925

16 2≠13 9.0004090 3.0000250 -0.0000335

Figure 3: The steps taken by following the normal line to reach the maximum value. Line gets darker
as n increases.

Through the contour plot shown in Figure 3., the maximal value of the objective function becomes

much more apparent as it is narrowed down to a smaller feasibility area with the changing colour

gradient.
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Figure 4: Shows the objective functions and corresponding contour plot in 3D. Visually the higher z
values correspond to a redder tint in the corresponding contour plot.

5.3 Method 2:

Although Table 7. does approach the optimal value of the function, it is computationally ine�cient as

it requires a large number of steps n in order to increase its accuracy. To mitigate this deficiency, a

value of l can more methodically be chosen so that it when added to the current point it reaches an

optimal value at a much faster convergence rate and is more computationally e�cient. The following

algorithm describes this process.

Algorithm 2: Finding the optimal solution through approximation with a specific line length l at each

step n where the variable l is not predetermined.

(1) Choose a point A = (cx1, cx2) that meets all of the constraint equations, i.e. is within the feasibility

range

(2) Initiate a new variable l

(3) Update cx1 to cx1 + l · Nx1 and cx2 to cx2 + l · Nx2

(4) Plug in cx1 and cx2 into the objective function f(x1, x2) to obtain g(cx1, cx2) = f(cx1, cx2)18

(5) Solve for l by setting gÕ to equal 0

(6) Update cx1 to cx1 + l · Nx1 and cx2 to cx2 + l · Nx2, since the value of l has been set to a constant

(7) Repeat steps 2 to 6 "n" number of times

(8) The final value of A = (cx1, cx2) will approximate the optimal solution

18Note that the value of cxp has been modified to cxp + l · Nxp ’p œ {1, 2} in the previous step.



THE NONLINEAR OPTIMIZATION OF POLYNOMIAL FUNCTIONS 13

Table 8. Compares key elements of the current point at each step throughout Algorithm 2 with a total

of n=3 steps.

Trial Number Line length l: x1 x2 P (x1, x2)

0 7.69245 1.3219121 2.5301852 -11834.752

1 0 9.0000000 3.0000000 0.0000000

2 0 9.0000000 3.0000000 0.0000000

3 0 9.0000000 3.0000000 0.0000000

As shown in Table 8., Algorithm 2 converges on an optimal solution on the first trial, yielding much

more optimal results in terms of computational e�ciency than those found in Table 7.

The process by which this optimal solution was found is as follows:

(1) A = (cx1, cx2) æ A = (1.3219121, 2.5301852)

(2) cx1 = 1.3219121 + 0.9981330 · l, cx2 = 2.5301900 + 0.0610748 · l

(3) g(cx1, cx2) = f(cx1, cx2) = 200(≠(≠0.469815 + 0.0610748 · l)2 ≠ (≠7.67809 + 0.998133 · l)2)

(4) l = 7.69245

(5) Update cx1 and cx2 to cx1 + l · Nx1 and cx2 + l · Nx2 respectively

(6) Step 5. results in the point B = (9.0000000, 3.0000000)

Figure 5: Shows the steps taken by following Algorithm 2
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5.4 Method 3:

To find the maximum value of f(x1, x2) using di�erential calculus, without regard for the constraint

equation, one may set ˆ
ˆx1

f(x1, x2) = 0 and ˆ
ˆx2

f(x1, x2) = 0 yielding

≠400(x1 ≠ 9) = 0 æ x1 = 9

≠400(x2 ≠ 3) = 0 æ x2 = 3

Or the point P = (9, 3). Where P0 = 9 and P1 = 3. To guarantee that this value is the maximum

value, one may perform the second derivative test.

Let D = D(P0, P1) = fx1x1(P0, P1) · fx2x2(P0, P1) ≠ [fx1x2(P0, P1)]2

fx1x1 = ˆf(x1, x2)
ˆx2

1
= ≠400

fx2x2 = ˆf(x1, x2)
ˆx2

2
= ≠400

fx1x2 = ˆ

ˆx1

ˆ

ˆx2
f(x1, x2) = 0

D = ≠400 · (≠400) ≠ (0)2 = 160000

As D > 0 and fx1x1(P0, P1) < 0, there exists a relative maximum at P .19

The point P lies within the feasibility range of Example 2., and satisfies all of the constraint equations,

therefore it is an optimal solution to this optimization problem.

6 Conclusion

Throughout the various examples which were presented and analyzed throughout this paper, it is

primordial that di�erential calculus plays an important role in the optimization of nonlinear functions.

Formally defining two di�erent methods of optimization, it was found that the method relying on a

systematic approach to find the magnitude of the directional vector line which is added to the original

point, performs far better than the method whose selection of magnitude is arbitrary. This research,

however, has certain limitations. The behaviour of the two models was not tested near the constraint

equations, nor was it tested on functions with nearly identical maximum or minimum values. If the

models were tested near constraint equations, there is a possibility that the line towards the optimal

point would lead towards a point outside of the constraint equations. Furthermore, if a function with

19"Calculus III - Relative Minimums and Maximums." Calculus II - Approximating Definite Integrals. Accessed October
02, 2018. http://tutorial.math.lamar.edu/Classes/CalcIII/RelativeExtrema.aspx.
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extremely similar optimality points was tested, then a new model must be developed in order to

account for this semblance, as Method 1 and Method 2 would likely lead to di�ering optimal solutions

upon numerous iterations.

7 Future Work

Future work includes the analysis and evaluation of many more variations of nonlinear optimization

problems including more complex functions such as trigonometric functions, functions with degree

greater than 2, or functions with three or more variables. Although Algorithm 2 poses a systematic

solving method, the creation of a less systematic method of narrowing down the optimal point using

randomly generated points spread throughout the graph may yield successful results. As the behaviour

of points near the constraint equations is di�cult to ascertain, an analysis of Method 1 and Method 2

near the constraint equations would be beneficial. An additional method could rely on the use of linear

regression in order to convert a nonlinear function into a set of linear equations which can be solved via

the Simplex Method.

8 Software Used

Throughout this extended essay, the program “Wolfram Mathematica” has been used extensively in

order to graphically display optimization problems and e�ciently format tables. The application

“Graphing Calculator 3D” has been used to graph three dimensional functions. Code relevant to this

paper may be found in Appendix A. LATEX originally developed by Leslie Lamport is used for the

typesetting of this paper.
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Appendix A. 
 

Mathematica Code used to create Figure 2. 
p1 = ContourPlot[x + 2 y, {x, -5, 20}, {y, -10, 25},  
  PlotLegends -> Automatic] 
f[x_] := x + 5 
g[y_] := 15 
h[x_] := (14 - 5 x)/8 
p2 = Plot[{f[x], h[x]}, {x, -5, 20}, PlotRange -> {-10, 25}, PlotStyle -> Black] 
p3 = ParametricPlot[{15, y}, {y, -10, 25}, PlotRange -> {{-5, 20}, {-10, 25}}, AspectRatio -> 
0.5, PlotStyle -> Black] 
img = Show[p1, p2, p3] 
 
Mathematica Code used to create Figure 4. 
graph2 = Module[{f}, f[x_, y_] := 200 (-(x - 9)^2 - (y - 3)^2);  
  Show[Plot3D[f[x, y], {x, -5, 20}, {y, -10, 25},  
    PlotStyle -> Opacity[0.8],  
    PlotRange -> {Automatic, Automatic, {-150000, 500}},  
    Mesh -> None],  
   Graphics3D[ 
    ContourPlot[f[x, y], {x, -5, 20}, {y, -10, 25}, Axes -> False,  
       ColorFunction -> "Rainbow", Contours -> 40][[ 
      1]] /. {x_Real, y_Real} -> {x, y, -150000}],  
   ViewPoint -> {-1.8, -1.8, 1}, ViewAngle -> 0.7, ImageSize -> 300]] 
 
Mathematica Code used in Method 2 and for the creation of Figure 5. And Table 8. 
f[x_] := x + 5; 
g[y_] := 15; 
h[x_] := (14 - 5 x)/8; 
p1 = Plot[{f[x], h[x]}, {x, -5, 20}, PlotRange -> {-10, 25},  
   PlotStyle -> Black]; 
p2 = ParametricPlot[{15, y}, {y, -10, 25},  
   PlotRange -> {{-5, 20}, {-10, 25}}, AspectRatio -> 0.5,  
   PlotStyle -> Black]; 
p4 = ContourPlot[ 
   200 (-(x - 9)^2 - (y - 3)^2), {x, -5, 20}, {y, -10, 25},  
   PlotLegends -> Automatic, Contours -> 40,  
   ColorFunction -> "Rainbow"]; 
img = Show[p4, p1, p2]; 
f[x_, y_] := 200*(-(x - 9)^2 - (y - 3)^2) 
gx[x_] := Derivative[1, 0][f][x, 0] 
gy[y_] := Derivative[0, 1][f][0, y] 
ox = 1.3219120704162712`; 
oy = 2.5301852263773057`; 
arrows = {}; 
mult = 8; 
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xpoints = {}; 
ypoints = {}; 
PP = {}; 
Do[norm = Normalize[{gx[ox], gy[oy]}]; 
 cx = ox + z*Part[norm, 1]; cy = oy + z*Part[norm, 2];  
 optz = Solve[D[f[cx, cy], z] == 0]; mult = z /. optz[[1]];  
 cx = ox + mult*Part[norm, 1]; cy = oy + mult*Part[norm, 2]; 
 ar = Graphics[{GrayLevel[1 - (n - 1)/25],  
    Arrow[{{ox, oy}, {cx, cy}} ], Frame -> False,  
    PlotRange -> {{-1.5, 1.5}, {-1.5, 1.5}},  
    AspectRatio -> 1/GoldenRatio, Axes -> True}]; 
 arrows = Append[arrows, ar]; ox = cx; oy = cy; 
 xpoints = Append[xpoints, StringForm["``", NumberForm[cx, 20] ]]; 
 ypoints = Append[ypoints, StringForm["``", NumberForm[cy, 20] ]];  
 PP = Append[PP, StringForm["``", NumberForm[f[cx, cy], 20] ]], {n, 5}] 
app = Show[img, arrows[[1 ;; 5]]] 
 
Mathematica Code which outputs the normalized function N: 
[1, Input] Normalize[{-400*(-9 + x1), -400*(-3 + x2)}, {x1, x2}] 
[2, Output] {-((400 (-9 + x1))/{x1, x2}[{-400 (-9 + x1), -400 (-3 + x2)}]), -(( 
  400 (-3 + x2))/{x1, x2}[{-400 (-9 + x1), -400 (-3 + x2)}])} 
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