
Bot Or Not: Synthetic Text Generation in Social Media Contexts
Using Large Language Models

Written by David Holcer1*

1McGill University
845 Sherbrooke St W

Montreal, Quebec H3A 0G4

Abstract
The rise of bot accounts on social media platforms presents
challenges in distinguishing synthetic from authentic user ac-
counts. This research focuses on developing methodologies to
generate bot accounts and synthetic text posts for an adversar-
ial competition aimed at evaluating the efficacy of bot detec-
tion systems based primarily on the text within a user’s post,
devoid of additional metadata typically associated with user
accounts such as number of likes or number of followers. Us-
ing techniques such as Markov chain models, fine-tuned large
language models (LLMs), and probabilistic text augmenta-
tion techniques, the study explores various strategies for en-
hancing authenticity in bot-generated content to more reliably
deceive bot detection methods. Key techniques include inte-
grating human-like typographical errors, statistical patterns,
and probabilistic time distributions into synthetic posts to in-
crease the difficulty of detection. Results indicate that incor-
porating advanced text augmentation and LLM-based strate-
gies can reduce detection rates. However, continued develop-
ment is necessary to mimic nuanced human behaviors effec-
tively. Future work can refine these methodologies, explore
group bot dynamics, and analyze sentiment-based text pat-
terns to further challenge bot detection systems.

Introduction
With the rise in popularity of social media platforms in the
last decade, more users are flocking to these platforms to
connect with their social network digitally. Users on these
platforms may create accounts to represent their person,
their interests, or their pets, and post their thoughts, feelings,
the news, or funny messages. However, not all user accounts
are created for these reasons. As with all great technologies,
they may be used for purposes beyond their original intent.
Nefarious actors have arisen and exploited vulnerabilities for
personal or organizational gain. Bot or sybil accounts are ac-
counts whose post are synthetically generated often by auto-
mated means detached from an individual. They may post to
spread false information, promote a political cause, or sim-
ply to gain popularity and elicit discourse. With far reach-
ing repercussions from impact on U.S. presidential elections
to the rise of extremist ideologies and conspiracy theories,
the effect of bots is undoubtedly profound. Despite attempts

*Under the supervision of Derek Ruths, McGill University.
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

by many platforms to suspend or restrict access to such ac-
counts on their platforms, differentiating bot accounts from
real users is not straightforward. (Hayawi 2024)

Out of the need to better develop, understand, and create
metrics for detecting bot accounts and synthetic text-based
posts in the context of social media spurred the Bot or Not
research project. This research relies on an adversarial, dig-
ital competition consisting of two teams competing against
each other. On one side the bot team has as its primary goal
to inject users and tweet-like posts into the competition en-
vironment without detection. Simultaneously, the bot detec-
tor’s primary objective is to discern the bot accounts from
the real user accounts. The digital competition is static and
relies on an existing set of posts, textual based data obtained
from the primarily text-based social media platform X for-
merly known as Twitter. The competition is divided into ses-
sions and subsessions within each session, spanning a time
period of two days. The bot teams must create a set of users
and posts to inject into a session, which consists of four sub-
sessions. Meanwhile, given the totality of the datasets that
span all four subsessions, the detector team must discern be-
tween real users and artificially generated bot users/posts by
outputting a yes or no response to the question ‘Is the given
user a bot?’ for each user in the dataset, accompanied by a
score ranging from 0 to 100 representing the confidence in
the given decision. The overview of the competition is out-
lined in Figure 1. below.

The author’s work focuses on the development of bot user
accounts and the synthetic generation of posts associated
with each bot. User accounts are comprised of certain meta-
data including:

name: The user’s full name, which may include emojis or
special characters.

username: An alphanumeric string handle uniquely iden-
tifying a given user.

description: A brief string description giving a brief
overview of the users interests, hobbies, or affinities.

location: An optional string parameter detailing the loca-
tion of the user or an arbitrary location description if the user
is based predominantly online.

User posts in the context of this research had to adhere to
the following constraints:

Text-Only: Only text-based posts were considered, ex-
cluding content with memes, images, or videos.



Figure 1: Competition Overview whereby both bot and de-
tector teams interact with the competition infrastructure.

No Dynamic Metadata: Likes, followers, comments,
replies, and reposts are excluded. This is because real users
on X (Twitter) already have this metadata, but newly created
bot users would not naturally accumulate it. Allowing ran-
dom numbers for these metrics would lack credibility and
have no way of being verified as on X (Twitter).

No Links: Posts containing links are not allowed be-
cause bot detectors could gain information by verifying
their authenticity. To address links added by X (Twitter)
for posts referencing other posts, images, or links, existing
posts were anonymized by converting links to the generic
link ‘https://t.co/twitter link’. This link was used as a place-
holder in lieu of attached images, memes, and other linked
content.

No Mentions: Mentions are anonymized because they can
only reference existing users, and bot detectors could gain
information by verifying their authenticity. Mentions may
be included in posts represented as ‘@mention’.

User Activity Requirements: Each user in the dataset, in-
cluding bots, must have between 10 and 100 posts to ensure
they appear active.

The author took various approaches when conducting re-
search and generating bots for the competition.

Manual Generation: Initially, synthetic posts were cre-
ated manually by studying real social media posts. This ap-
proach allowed for controlled experimentation with authen-
tic writing styles but lacked scalability and complexity.

Markov Chain Models: Leveraging publicly available ar-
ticles, this method generated text by sequentially generating
words using Markov chain models and an input source ar-
ticle. While useful for mimicking general patterns, this ap-
proach produced incoherent sentences and lacked semantic

complexity, leading to easy detection within the competition
environment.

Large Language Models (LLMs): The author trained
Meta’s Llama 3.1 LLM on personal text messages to sim-
ulate casual conversations with typographical errors and
abbreviations. When this method proved insufficient, Ope-
nAI’s ChatGPT LLM gpt-4o-mini was employed. Chat-
GPT generated synthetic users and posts using pre-existing
datasets. By prompting the LLM with existing sample out-
puts and specific prompts outlining instructions for meta-
data and tweet creation, the credibility of the output text in-
creased, supported by increased performance in the compe-
tition environment.

Text Augmentation and Enhancement: To combat patterns
typical of LLM outputs, text was modified using functions
for typographical errors, case transformations, random spac-
ing, and hashtag or mention additions. These adjustments
were guided by statistical insights derived from real user and
post data.

Probabilistic Time Distribution: Post timestamps were
assigned based on weighted probabilities obtained from a
given session’s metadata, better reflecting real user activity
and enhancing the realism of the given bot’s activity.

These methodologies were implemented using Python
code under a competition framework designed by Émile
Ducharme and Aviv Shlomi. All source code the author de-
veloped throughout this research may be found in the cited
Github repository. (Holcer, 2024)

Methodologies

Initial Approach – Manual Generation

The author’s initial approach for post generation involved
manually creating synthetic Twitter users and tweets by
studying and adapting real posts from the platform. By ex-
amining how real users tweet and interact, the generated
tweets remained realistic but included artificial profiles and
content. This approach provided control over the dataset
and allowed for a rapid first method to test the competi-
tion infrastructure. The method focused on capturing au-
thentic writing styles and semantic patterns consisting of ty-
pographic errors or incomplete sentence structures. The syn-
thetic content reflected genuine social media interactions.
After generating a set of 12-13 posts for 2 users, an algo-
rithm was written to distribute the posts into four groups,
corresponding to the four subsessions per competition ses-
sion. Each post was then assigned a random time value based
on the competition session’s start and end times. Although
this initial approach provided a suitable method to test the
competition infrastructure, it lacked complexity in method-
ology and did not fare well in competition as shown in Fig-
ure 2. below. However, as this was the first iteration of the
competition, this submission was not detected by one bot,
“seunghyundetector2”, which could signify the additional
improvements necessary for accurate detection of bot ac-
counts early into the research and competition process. This
bot detector is shown in light green in Figure 2. below.



Figure 2: Session 1. Results. The author’s generated users
are ‘aaronjayjack’ and ‘davidholcer’. Positive scores corre-
spond to predictions of bots whereas negative scores corre-
spond to predictions of real users.

Markov Chain Models
A second method was introduced to generate a user, whose
posts were created using Markov chain models for text gen-
eration. 1

The sources for the Markov chain model were publicly
accessible articles from Wikipedia and The New York Times.
The generated posts were randomly distributed across the
four subsessions and were assigned timestamps stochasti-
cally within the session’s time bounds. Despite incorporat-
ing this user-post generation approach, all bot detectors suc-
cessfully identified the created users as bots during this it-
eration, Session 3, of the competition, as shown in Figure 3
right. This outcome is likely due to two primary factors:

1. The lack of semantic meaning in the generated text,
which often consisted of incomplete or incoherent sen-
tences produced by the Markov chain model.

2. The randomized timing distribution of posts, which re-
mained a potentially detectable feature for the bot detec-
tors.

Results Parser
To enhance the understanding of the tweet dataset and to
better quantify the performance of bots and detectors within
the competition, a results parser was developed. The parser
extracts and organizes key insights from session results. The
extracted information includes:

Top n-grams for the posts in the dataset. 2

Bot vs. real user statistics for the following metrics:

1Markov chain models generate text by predicting the next
word in a sequence based on the probability of it following the pre-
vious word or words. The model uses a predefined dataset to calcu-
late probabilities, outputing generated text that mimics the patterns
of the source material.

2N -grams are contiguous sequences of n words from a given
sample text. For example, 2-grams (bigrams) are continuous se-
quences of two words within the sample text.

Figure 3: Session 3. Results. The author’s generated users
are ‘mrmarkov’, ‘bethanybo’, ‘davidholcer’, and ‘aaron-
jayjack’. Positive scores correspond to predictions of bots
whereas negative scores correspond to predictions of real
users.

• Total Posts

• Total Links in Posts

• Average Links per Post

• Total Hashtags in Posts

• Average Hashtags per Post

• Total Emojis in Posts

• Average Emojis per Post

• Total Word Count in Posts

• Average Words per Post

• Total Character Count in Posts

• Average Characters per Post

A heatmap of the time distribution of posts divided by real
vs bot accounts. An example is shown in Figure 4. below for
session 6.

For each bot detector, confidence scores were plotted
against the proportion of posts, visually distinguishing cor-
rect and incorrect predictions of bot vs. non-bot accounts for
each bot detector. An example of this plot is shown in Figure
5. and Figure 6. below, corresponding to competition session
6.

Additionally, the Matthews Correlation Coefficient
(MCC) was shown for each bot detector. 3 An example fig-
ure for session 6 is shown in Figure 7. below.

3The MCC was calculated for each bot detector to provide a
balanced measure of prediction quality. The MCC is a performance
metric used in binary classification that accounts for true positives,
true negatives, false positives, and false negatives. It provides a sin-
gle score ranging from -1 to +1, where +1 indicates perfect predic-
tions, 0 indicates random prediction, and -1 indicates total disagree-
ment between predictions and actual outcomes.



Figure 4: Heatmap representing the time distribution of
posts obtained from the Results Parser corresponding to the
results obtained from Session 6.

Figure 5: Plot representing the confidence scores obtained
from the Results Parser for bot detector ‘maddydetector2’
corresponding to the Bot accounts. Results obtained from
Session 6.

Finetuning Large Language Models (LLMs) using
Text Messages

The next approach was to train an LLM using a dataset of the
author’s text messages. 4 In theory, since text messages con-
versations are often casual conversation, including the use
of abbreviation and typos, by simulating such conversations
with a bot, it would be difficult for bot detectors to discern
the bot accounts from the real accounts. This approach re-
lied on finetuning a Llama 3.1 LLM model 5 obtained via
the HuggingFace API 6 and finetuning using a text database

4Large Language Models (LLMs) are advanced machine learn-
ing models designed to process and generate human-like text by
understanding natural language patterns. In the context of Natural
Language Processing (NLP), LLMs analyze large amounts of text
data to predict word sequences, generate coherent sentences, and
perform tasks including translation, summarization, and enhance-
ment of text. By fine-tuning an LLM with a specific dataset, the
model can adapt its output to reflect the nuances, vocabulary, and
tone of the given data.

5Llama 3.1 is an LLM created by Meta Inc.
6HuggingFace is a public repository of artificial intelligence

and large language models.

Figure 6: Plot representing the confidence scores obtained
from the Results Parser for bot detector ‘maddydetector2’
corresponding to the Non-Bot accounts. Results obtained
from Session 6.

Figure 7: Plot representing the MCC values obtained from
the Results Parser for all bot detectors in Session 6.

obtained from iMessages. 7 However, in practice, the re-
sults obtained from this LLM training did not show suffi-
cient success to perform well in the real competition. Thus
it was decided to change approaches and use another LLM
for user and post generation, Open AI’s ChatGPT model gpt-
4o-mini.8

ChatGPT Prompt Completion
ChatGPT Prompt Completion generated user information
using a random subset of existing real “users.” The ChatGPT
Completion API was used for this purpose. This process was
completed in 3 steps:

1. Gathering a random subset of 20 users from the results
files from Sessions 3-5, and extracting user information
in the following text format:

7iMessages is a proprietary messaging application from Apple
Inc. Messages were collected from the “chat.db” database and ex-
tracted as text information associated with a given contact, and time
sent.

8Open AI’s ChatGPT is an LLM trained on a large, diverse cor-
pus of internet text to generate human-like text and perform con-
versational tasks. The model used in this research, gpt-4o-mini, is a
smaller-scale version designed for efficient experimentation. It uses
contextual understanding and probabilistic text generation to pro-
duce realistic outputs, making it an excellent choice for simulating
synthetic social media posts.



Name – ‘{Name of user}’
Username – ‘{Username of user}’
Description – ‘{Description of user}’
Location – ‘{Location of user}’
Where the information within the brackets {} indicates
inserted information specified by the given description.
Each user’s information was separated by an empty line.

2. ChatGPT Completion API was prompted to generate
user information using the following prompts:

a) System Prompt:
You are a creative assistant that generates realistic
twitter user metadata.

b) User Prompt:
Generate user metadata in a similar format to the fol-
lowing dataset.:
This user prompt was then followed by the 20 user’s
information gathered from Step 1.

This process returned 20 User’s information in the format
specified in Step 1. From this text output, key user infor-
mation: Name, username, description, location fields were
extracted and used for user generation. For the competition
Session 6, five (5) of these generated Users were selected for
insertion within the competition infrastructure.

ChatGPT’s Completion API was also used to generate
posts using a random subset of existing real “posts” from
the results files obtained from Sessions 3-5.

1. Gathering a random subset of posts 60 posts by scram-
bling the results files from Sessions 3-5.

2. ChatGPT Completion API was prompted to generate
posts using the following prompts:

a) System Prompt:
You are a creative assistant that generates realistic
tweets. No links, use ‘https://t.co/twitter link’ instead.
No mentions, use ‘@mention’ instead.

b) User Prompt:
Generate tweets in a similar format to the following
dataset.:
This user prompt was then followed by the 60 sample
posts gathered from step 1.

This process returned 60 text posts. However, not all
60 posts were used for each user. A normal distribution
was used to select the total number of posts to assign
to each user. The mean of the normal distribution was
the ‘users average amount posts’ found within the session
metadata information. The standard deviation was one quar-
ter of this value. Using a normal distribution with the given
parameters, a selected number of posts were determined and
assigned to a given user, adhering to the 10 post minimum
value. Then, given the total output of 60 tweets, a subset
of posts were obtained such that the total number of posts
equaled the predetermined number assigned to each user.

The following settings were used in the parameters of
ChatGPT’s Autocomplete API: model: “gpt-4o-mini”

temperature: 1

The temperature parameter is a float value that ranges
from 0 to 2. Higher values generate more random output
while lower values will produce more deterministic outputs.

max completion tokens: 16384
The maximum number of tokens the model can return.
presence penalty: 2.0
The presence penalty parameter is a float value ranging

from -2.0 to 2.0. Higher values decrease the output’s like-
lihood of repeating input lines. A value of 2.0 was used to
highly discourage the repetition of sample data. (OpenAI,
2024)

Text Scramble and Enhancements
After posts were generated by ChatGPT, further enhance-
ments were made to increase the similarity of the output to
posts found within the sample dataset and to prevent exhibit-
ing patterns archetypal of an LLM’s output. Such patterns
included: lack of typographical errors, consistently capital-
ized sentences, infrequent use of emojis. To address each
of these potential markers, typographical errors and sen-
tence capitalization variations were introduced into the out-
put tweets using a weighted probability distribution. Addi-
tionally, links, hashtags, and user mentions were augmented.
For typographical errors, the ‘typo’ python library was used
to generate the following textual modifications.

• Character Swap: With a 15% chance, this function swaps
two consecutive random characters in a word, introduc-
ing minor typographical variations.

• Character Skip: With a 15% chance that this function
will skip a random character in a word, simulating a typ-
ing omission.

• Extra Character Addition: With a 10% chance, this func-
tion adds an extra letter next to a random character in a
word, choosing a key that is a keyboard neighbor to the
original.

• Nearby Character Replacement: This function, with a
10% chance, replaces a random character in a word with
one from a neighboring key on the keyboard, mimicking
a common typing error.

• Similar Character Replacement: With a 10% chance, this
function substitutes a random character in a word with
another visually similar character (e.g., ‘O’ with ‘0’).

• Space Skipping: This function has a 10% chance to re-
move a random space from the string, simulating acci-
dental concatenation of words.

• Random Space Addition: With a 10% chance that this
function will add a space at a random position within the
text, splitting a word unexpectedly.

• Repeated Character Addition: With a 10% chance, this
function repeats a random character in a word, mimick-
ing a typing error.

• Single Character Simplification: This function has a 10%
chance to replace a set of repeated consecutive characters
with a single instance of the letter.

(Kumar, 2024)



Each of the errors above count as 1 typo. For each post,
the number of typographical errors to generate was decided
using a normal distribution dependent on the number of
characters in the tweet. The normal distribution was mod-
elled using a mean of 0.9 typos per 100 characters with a
standard deviation of 0.42 typos per 100 characters. These
values were chosen manually by hypothesizing typo occur-
rences within tweets. The total typo count was then deter-
mined by rounding the output of this normal distribution to
the nearest whole number, using the total number of char-
acters in the original tweet and requiring a minimum of 0
typos.

Given the analysis gleaned from the session results parser,
specifically the statistical frequency of hashtags, mentions,
and links, it was decided that the generated tweets required
further modification to better conform to discovered statisti-
cal insights.

Thus, the following additional functions were created and
called on the generated tweet after introducing typographical
errors.

• Hashtag Addition: With a 60% chance, this function ran-
domly selects between 1 and 5 words from the text and
converts them into hashtags by adding the ‘#’ character
before each selected word.

• Link Duplication: This function, with a 30% chance, du-
plicates every occurrence of a link within the text, effec-
tively doubling the number of hyperlinks.

• Mention Addition: With a 40% chance, this function ap-
pends between 1 and 3 mentions (e.g., ‘@mention’) to
the end of the tweet.

• Word Exaggeration: This function exaggerates specific
words with certain rules. If a word ends in an exclama-
tion mark (‘!’) or question mark (‘?’), the punctuation
is repeated between 1 to 5 times inclusive, chosen ran-
domly. For other words longer than one character, there
is a 5% chance that the last character is repeated between
2 and 6 times inclusive, chosen randomly.

• Case Transformation: For each word, there is a 10%
chance it becomes fully capitalized. Additionally, there
is a 5% chance that the word is transformed into an alter-
nating case format, randomly (with 50% chance) trans-
forming each character into uppercase or lowercase.

• Randomized Sentence Case: With an 80% chance, this
function changes the first letter of the text to lowercase,
mimicking the tendency of humans to neglect proper sen-
tence capitalization.

An example of a modified tweet follows, after calling all
above functions on the input tweet.

Original Tweet: “Nominees are in, and OMG-I can’t even
choose the best one this week! :)”

Augmented Tweet: “nOMINEES ARE in, and OMG-I
#can’t even choose the #6esT one this week!!!! :)”

Probabilistic Time Distribution
For the competition iteration using ChatGPT’s autocom-
plete, posts were distributed using a weighted probability
distribution. Given the percentage distribution of posts in

Figure 8: Session 6. Results. The author’s generated users
are ‘chloes canvas’, ‘JustDunked’, ‘davesonfire’, ‘max-
inthefuture’, and ‘StargazersClub’. Positive scores corre-
spond to predictions of bots whereas negative scores cor-
respond to predictions of real users.

a session, the posting frequency was reproduced to closely
match the dataset’s posts’ time distribution. To do so, each
time interval found in the session metadata was given an as-
sociated weighted probability depending on the fraction of
total posts that were found within. Then, for each post per
user, a time interval was randomly chosen using the prese-
lected frequency weights. Within each time interval, a ran-
dom time was sampled and attributed to the given post.

Discussion
The objective of the research was to develop a bot generation
approach that would remain undetected within the bounds of
the competition platform, and to better understand and detail
the efficacy of the employed strategies. The implemented
methodologies showed varying success within the compe-
tition infrastructure. The initial attempts of manual tweet
generation were largely unsuccessful given their simplistic,
naı̈ve approach and randomly distributed time attribute. Ses-
sions 1 and 3 show that despite some initial success (un-
detected bot) in Session 1, as the bot detectors developed
their methods, the author’s users and posts generated in Ses-
sion 3 were all detected as shown in Figure 2. and Figure
3. After an unsuccessful attempt to train the Llama LLM
on a dataset of text messages, OpenAI’s ChatGPT Comple-
tion API was used on the LLM gpt-4o-mini. After synthetic
generation of users and posts using pre-existing user and
post datasets run from prior competition sessions, generated
posts were systematically enhanced via a combination of in-
troducing typographical errors within generated tweets and
calling functions to further modify words and statistically
introduce human-like textual patterns. Results improved as
a bot, “marieelisedetector2” failed to detect the created users
as shown in Figure 8. above. This can likely be attributed to
the introduction of typographical errors as well as the prob-
abilistic time distribution of generated posts.

These successful results indicate the efficacy and potential
benefit of continuing to use LLMs in the context of synthetic
user and post generation. Further research and development



of the employed methodologies could prove useful to de-
crease the detection rate of generated bot accounts.

Conclusions and Future Work
In this study, a systematic approach to bot development was
undertaken, exploring methods such as handcrafted gener-
ation, Markov Chain models, and LLMs such as ChatGPT
gpt-4o-mini. While manual approaches lacked complexity
and Markov chains struggled to perform well in competi-
tion, LLMs combined with text augmentation proved more
effective in mimicking human behavior and generating more
sophistication, supported by improved competition results.

Despite these advancements, results indicate that more re-
search would be beneficial in addressing the limitations of
current methodologies and further refining human-like text
generation techniques.

Future work may include:
Fine-tuning LLM Outputs: Further optimization of Chat-

GPT/LLM models to improve coherence and variety in gen-
erated post topics.

Group Bot Dynamics: Developing algorithms that simu-
late coordinated behaviors among bot accounts, similar to
group interaction or swarm intelligence algorithms.

Incorporating Profanity and Sentiment: Adding
sentiment-based generation and replicating profanity
trends observed in the original dataset could further enhance
realism and fool bot detectors.

User Categorization: Separating users into different cate-
gories such as ‘professional’, ‘casual’, and ‘conspiracy’ cat-
egories to tailor content generation according to the posting
and semantic patterns of each group.

These topics aim to refine synthetic generation techniques
and contribute to the broader understanding of existing dig-
ital bot detection challenges.

References
David Holcer. 2024. Bot or Not Github Repository. https:
//github.com/davidholcer/BattleBotsTemplate. Accessed:
2024-12-27.
Hayawi, K.; Saha, S.; Masud, M. M.; Mathew, S. S.; and
Kaosar, M. 2023. Social media bot detection with deep
learning methods: a systematic review. Neural Computing
and Applications, 35(12): 8903–8918.
OpenAI. 2024. ChatGPT Create Chat Completion
API Documentation. https://platform.openai.com/docs/api-
reference/chat/create. Accessed: 2024-12-27.
Ranvijay Kumar. 2023. Typo Python Library. https://pypi.
org/project/typo/. Accessed: 2024-12-27.

Acknowledgements
The author would like to thank Professor Derek Ruths for
his supervision and guidance throughout the research.

Additionally, the author is thankful towards Émile
Ducharme and Aviv Shlomi for their dedication and support

with the explanation and maintenance of the competition ar-
chitecture, and for troubleshooting technical problems when
they arose.


